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Abstract
I review the basic features of formation of the universal annihilation catastrophe
which develops in an open system, where species A and B diffuse from the
bulk of a restricted medium and die on its surface (desorb) by the reaction
A + B → 0. This phenomenon arises in the diffusion-controlled limit as a
result of self-organizing explosive growth (drop) of the surface concentrations
of, respectively, slow and fast particles (concentration explosion) and manifests
itself in the form of an abrupt singular jump of the desorption flux relaxation
rate. I present a systematic scaling theory of passage through the point of
singularity and demonstrate the results of extensive numerical calculations
illustrating its main features. In conclusion I discuss the conditions and
possibilities of an experimental observation of the annihilation catastrophe and
point out some prospective lines for its generalization.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Finite-time singularities—blow-up solutions developing from smooth initial conditions at a
particular time—provide probably the most dramatic manifestation of strongly nonlinear effects
that can occur in nature [1]. The formation of finite-time singularities is observable in a broad
spectrum of nonlinear systems (Jang–Mills fields [2], black holes [3], self-gravitating Brownian
particles [4], turbulent flows [5], jet eruption [6] and earthquakes [7] to name only a few) and
so the description of scenarios of the development of finite-time singularities is a fundamental
problem which attracts wide interdisciplinary interest. The aim of this review paper is to
give an insight into the scaling theory of annihilation catastrophe which is the first finite-time
singularity phenomenon arising in the purely ‘sink’ reaction–diffusion system A + B → 0.

The irreversible bimolecular reaction between unlike diffusing species A + B → 0 is
one of the most abundant reactions, depending on the interpretation of A and B (chemical
reagents, quasiparticles, topological defects, etc), playing the key role in a broad spectrum
of problems. After the pioneering works by Ovchinnikov and Zeldovich [8] and Toussaint
and Wilczek [9] (spontaneous growth of single species domains) and by Galfi and Racz [10]
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(propagation of localized reaction front) interest in the reaction–diffusion system A + B → 0
increased significantly and for the last decades this system has acquired the status of one of
the most popular objects of research (for a review see [11–15] and references therein). The
majority of papers in this field are traditionally devoted to systems where both reaction and
diffusion proceed in the bulk of a d-dimensional medium.

Here I focus on another wide class of systems where reaction proceeds on the catalytic
surface of a medium whereas diffusion proceeds in its bulk. In the work [16] it was first
demonstrated that in this class of systems the interplay between reaction and diffusion acquires
qualitatively new features and leads to a new type of self-organization. It has been found that
once particles A and B diffuse at different mobilities from the bulk of a restricted medium onto
the surface and die on it (desorb) by the reaction A + B → 0, there exists some threshold
difference in the initial numbers of A and B particles, �c, above which the loop of positive
feedback is ‘switched on’ and the process of their death, instead of the usual deceleration,
starts to accelerate autocatalytically [16, 17]. Recently, it has been discovered [18] that the
deceleration–acceleration transition is a prelude to much more nontrivial dynamical effects:
in the diffusion-controlled limit � → ∞ a new critical phenomenon develops—annihilation
catastrophe—which arises as a result of self-organizing explosive growth (drop) of the surface
concentrations of, respectively, slow and fast particles (concentration explosion) and manifests
itself in the form of an abrupt singular jump of the desorption flux relaxation rate. It has been
shown [18, 19] that in the limit of large initial number of A–B pairs the annihilation catastrophe
acquires a universal (independent of initial pair number) character and a scaling theory of the
universal annihilation catastrophe has been given. A systematic theory of the formation of
the annihilation catastrophe from a smooth initial distribution has been developed in recent
work [20] where the dependence of the critical point on the initial pair number has been found
and a complete picture of catastrophe universalization has been constructed.

In this review paper I first present the key features of the scaling theory of the formation
of the universal annihilation catastrophe and demonstrate some results of extensive numerical
calculations, then I describe the regularities of catastrophe universalization, and, finally,
I discuss the conditions and possibilities for experimental observation of the annihilation
catastrophe and point out some prospective lines for its modification.

2. Model

I consider a model in which species A and B are supposed to be initially uniformly distributed
in the bulk of an infinitely extended slab of thickness 2�. Both species diffuse to the surface
X = ±�(X ∈ [−�, �]) and irreversibly desorb as a result of surface reaction Aads+Bads → AB
with a rate proportional to the product of surface concentrations I = κcAscBs [21] (figure 1).
Because of planar spatial homogeneity the system is effectively one dimensional. The boundary
conditions are determined from the equality of diffusion I D and desorption I flux densities
at the surface I D |s = I , i.e. it is assumed that the surface layer capacity can be neglected.
According to [16, 18] after introducing index ‘H ’ (heavy) for slower diffusing species and
index ‘L’ (light) for a faster one, the problem of species evolution in the dimensionless units
reads (by symmetry I consider the interval [0, �] only)

∂h/∂τ = ∇2h, ∂l/∂τ = (1/p)∇2l, (1)

∇h|s = (1/p)∇l|s = −hsls , (2)

with ∇(h, l)|x=0 = 0 and initial conditions h(x, 0) = h0 and l(x, 0) = l0. Here h(x, τ ) =
cH /c∗ and l(x, τ ) = cL/c∗ are the reduced concentrations, ∇ ≡ ∂/∂x, x = X/� ∈ [0, 1] is
the dimensionless coordinate, τ = DH t/�2 is the dimensionless time, p = DH /DL � 1 is

2
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Figure 1. Schematic illustration of the processes of bulk diffusion, surface reaction and irreversible
desorption in the system A + B → 0. Because of planar spatial homogeneity the system is
effectively one dimensional. �D

A = √
DAt and �D

B = √
DBt are the diffusion lengths of A and

B particles, respectively.

the ratio of diffusivities and c∗ = DH /κ� is the characteristic concentration scale. According
to (2) particles disappear in pairs only, i.e.

J = hsls = − ˙〈h〉 = − ˙〈l〉,
where J = I/I∗ is the reduced desorption flux density and I∗ = κc2∗ is its characteristic scale,
therefore

〈h〉 − 〈l〉 = � = const,

i.e. the excess amount stays ‘inert’ in the bulk (here 〈h〉 = ∫ 1
0 h dx = NH /N∗ and 〈l〉 =

∫ 1
0 l dx = NL/N∗ are the total reduced numbers of particles in the bulk per unit of surface and
N∗ = c∗� = DH /κ). This ‘inert’ part of the majority species � = δN/N∗ acts as a control
parameter, whereas its ‘active’ part N = Npair/N∗ (equal to the total number of pairs) acts
as the only variable. I will consider here the annihilation dynamics for � > 0 when the pair
number N is dictated by the number of L particles N(τ ) = NL (τ ) so that in the final state all
L particles disappear N(∞) = l(x,∞) = 0 and H particles are distributed uniformly with
concentration h(x,∞) = �. Moreover, I will focus mainly on the H -diffusion-controlled
limit N0 → ∞ (note that the diffusion-controlled limit N0 = l0 = cL(0)/c∗ → ∞ means
c−1∗ = κ�/DH → ∞). Precisely in this limit the particle interplay is most ‘intensive’ and gives
rise to the explosive dynamics that is my prime interest here.

3. Self-accelerating dynamics and the critical transition point

The exact formal solution of the problem (1), (2) in the Laplace space f̂ (s) = L̂ f (τ ) reads

ĥ(x, s) = h0/s + (ĥs − h0/s) cosh(x
√

s)

cosh(
√

s)
, l̂(x, s) = l0/s + (l̂s − l0/s) cosh(x

√
sp)

cosh(
√

sp)
.

(3)
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According to (3) the boundary conditions (2) acquire the form

Ĵ = (h0/s − ĥs)
√

s tanh
√

s = (l0/s − l̂s)
√

s/p tanh
√

sp = L̂(hsls) (4)

and in an implicit form completely define the behaviour of surface concentrations hs and ls

which in turn, via equations (3), define the evolution of spatial distribution. The strategy
for solution of the nonlinear chain (4) is based on the fact that in the H -diffusion-controlled
regime the hs

〈h〉 ratio should rapidly drop with the time, therefore, according to (4) we can first (i)
calculate J (τ ) and ls(τ ) neglecting the hs contribution, then (ii) derive hs(τ ) from the condition
hs = J/ ls , and finally (iii) calculate next-to-leading terms, thereby defining the self-consistent
picture of the evolution of surface concentrations.

3.1. Transient stage τ � 1

At sufficiently small times the flux density is slightly changed, so assuming J ≈ J0 = h0l0

from (4) one obtains

hs = h0(1 − vh + · · ·), ls = l0(1 − vl + · · ·) (5)

where vi = 2√
π

√
τ/τi , τh = 1/ l2

0 and τl = 1/ph2
0. According to (5) the relative drop rate for

ls and hs is governed by the value of the parameter

R = vl/vh = r
√

p

where r = h0/ l0 = (1 + n0)/n0 and n0 = N0/�. So, the necessary conditions for the H -
diffusion-controlled annihilation regime are fulfilment of the requirements l0 = N0  1 and
R < Rc = 1. In [20] it is shown that for the condition ε = Rc − R  τ

1/4
h = 1/

√
N0 at times

τ ∼ τh the annihilation is followed by a sharp drop of hs , crossing over to the H -diffusion-
controlled regime, where the desorption flux density is governed by the rate of diffusion of H
particles to the surface

J = h0(1 − m)/
√

πτ ≈ J0(τh/τ)1/2/
√

π

with m ∼ (R/ε2)2(τh/τ). In the region τh � τ � p where both species diffuse in the
semi-infinite medium regime from (4) it follows that

hs = r

ε
√

πτ
(1 − φ + · · ·), ls = l0ε(1 + φ + · · ·) (6)

where φ = (R/
√

πε2)
√

τh/τ . At sufficiently small p and not too large r (so that R � Rc)
in the region τh, p � τ � 1/r 2 < 1 the distribution of L particles becomes uniform. In this
regime from (4) it follows that

hs = r√
πτ

(1 + σ + · · ·), ls = l0(1 − σ + · · ·), (7)

where σ = 2r
√

τ/π .

3.2. Exponential stage τ > 1

According to equations (6) and (7) at large N0 → ∞, ε  1/
√

N0 and not too large r (i.e. not
too small n0) by the moment that τ ∼ 1 when the diffusion length of H particles becomes
comparable with the system’s size, the ratio hs/h0 ∝ r/εN0 → 0. Neglecting the contribution
of hs , it can be shown [20] that at τ > 1 and large n0 the value of hs has to exponentially
rapidly tend to a constant C. In view of this, from (4) it follows that

J = Ae−ω0τ (1 + e−8ω0τ + · · ·), (8)

4
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where A = 2(h0 − C) ≈ 2h0 and ω0 = π2/4 is the main eigenfrequency of the diffusion field
relaxation. With the same accuracy upon performing the inverse Laplace transform one obtains
from (4) [20]

ls = (A/�c) e−ω0τ (1 − ), (9)

where �c is defined by

�c = √
ω0/p tan(

√
ω0 p) (10)

and the leading contribution to  is governed by the sum of exponentially decaying, −, and
exponentially growing, +, terms

 = − + +,

− = �8e−8ω0τ + �pe−χω0τ , + = λeω0τ
(11)

with exponent χ = (4/p − 1) and amplitudes �8 = −(�c/3)
√

p/ω0 cot(3
√

ω0 p), �p =
(�c

√
p/π) tan(π/

√
p), and λ = �c(� − C)/A. From the condition hs = J/ ls and

equations (8) and (9) locking the chain we find

hs = �c(1 + e−8ω0τ + · · ·)/(1 − ). (12)

3.3. Critical transition point

According to (11) and (12), in the limit of large A
|�−C|�c

→ ∞ (|λ| → 0) the hs value at
any � exponentially rapidly achieves universal (� independent) asymptotics hc

s = �c whence
it follows C = �c. In view of (6), (7) and (12) it is easy to check [20] that the contribution of
transient stage is reduced only to a relative shift of the amplitude δAtr/A |h0→∞∼ r/εh0 → 0,
therefore with an accuracy of vanishingly small terms we finally have

λ = �c(� − �c)/2h0.

This important result implies that in the diffusion-controlled limit N0 → ∞ the critical
asymptotic hc

s = �c appears as a precursor of long-time asymptotic hs |τ→∞ = �, and
precisely this intermediate asymptotic hc

s selects the threshold value � = �c at the crossing of
which the relaxation dynamics is qualitatively changed: at � < �c the surface concentration,
hs , escaping from hc

s , decreases, reaching its limiting value � from above, whereas at � > �c

the surface concentration, hs , escaping from hc
s , increases, reaching its limiting value � from

below. Equations (8)–(12) and more detailed analysis in [16, 17] suggest that at the crossing of
the threshold point � = �c not only the sign of ḣs changes, but the growth of hs (and with it the
whole annihilation process) begins to accelerate autocatalytically as a result of ‘switching-on’
of the loop of positive feedback: diffusion-induced growth of hs accelerates the drop of ls , the
drop of ls accelerates the growth of hs and so on (self-accelerating death of pairs). According
to equations (11) and (12) for the time of the start of self-acceleration, τs , and the departure
of the starting point hmin

s from the critical asymptotics hc
s , δs = (hmin

s − �c)/�c, we find,
respectively, τs = [1/ω0(α + 1)] ln(α�̃/λ) and

δs = (α + 1)�̃
1

α+1 (λ/α)
α

α+1 , (13)

where in the 0 < p < pc = 4/9 range α = 8, �̃ = 1 + �8 whereas in the pc < p < 1 range
α = χ, �̃ = �p .

5
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4. Annihilation catastrophe

The birth of an autocatalytic stage in the purely ‘sink’ system, which has been interpreted
in [16] as a new type of self-organization, is the key point of the problem. In [18] it was
shown that with growing � this stage becomes more and more pronounced so that far beyond
the threshold self-acceleration acquires an explosive character: at � = δc(0)κ�/DH → ∞
the rates of growth �H s = + d ln hs

dτ
and relaxation �Ls = − d ln ls

dτ
are synchronized singularly

growing by the law

�s = 1/|T |, |T | = |τ − τ�| → 0,

where the point of finite-time singularity τ� is achieved at the moment when the reduced number
of pairs n(τ ) = N(τ )/� drops to some critical value n� = �c/ω0 − 1 ≈ p/(1 − p). The
most spectacular consequence of concentration explosion is the singular behaviour of the flux
relaxation rate

τ−1
J = −d ln J

dτ
= �Ls − �H s

which is sustained at a constant value, τ−1
J = ω0, up to the critical point τ�, and upon reaching

this τ−1
J blows up abruptly to τ−1

J → ∞ with the width of the jump

|T |cat ∝ �−2/5 → 0.

In [18] it was shown that in the limit n0 = N0/� → ∞ this catastrophic jump of τ−1
J , called the

annihilation catastrophe, proceeds in the universal (n0—independent) regime and the scaling
theory of universal explosion was given. However, the approach developed in [18] did not allow
one to say anything about the dynamics of explosion formation or about how the universal
regime is achieved or how the point of catastrophe depends on the initial conditions.

I will follow here the work [20] where on the basis of equations (8)–(12) a closed theory
of formation of the annihilation catastrophe has been developed. According to (4) and (12)
the exponential growth δhs/hs = + leads to an exponentially growing contribution to the
flux δ J/J = −β2+ where β ∝ �−1, suggesting that in the limit � → ∞ at the initial
stage of self-acceleration the contribution to the flux is vanishingly small. The remarkable
fact to be proved below is that at � → ∞ the contribution to the flux remains vanishingly
small up to the point of finite-time singularity (τ�) → 1 where ḣs/hs → ∞. This means
that at � → ∞ equations (8)–(12) give a complete description of the explosion dynamics.
Moreover, since at � → ∞ the parameter λ = �c/2(1 + n0) becomes the unique function
of n0 = N0/�, equations (8)–(12) allow one to find the time of the catastrophe τ�(n0) and to
obtain the description of explosion evolution with growing n0. Taking (τ�) = 1 and λ < 1
from equations (11) we find

τ� = τ u
� (1 + δτ ), (14)

where

τ u
� = (4/π2) ln[2(1 + n0)/�c]

and

δτ (n0) = −(�8λ
8 + �pλ

χ )/| ln λ|.
Taking then the origin of time at the point τ�, i.e. introducing a relative time T = τ − τ�, from
equation (12) we find that at any p < 1 in the vicinity |T | � ω−1

0 an explosive growth of hs

sets in by the law

hs = (1 + Q)/μ|T |, |T | → 0, (15)

6
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where μ = ω0
�c

∼ 1− p and Q(n0) = (1+9�8)λ
8 +(1+χ)�pλ

χ . According to equation (8) in
the course of explosion the flux is actually ‘frozen’ J = J�[1 + ω0(1 + w)|T | + · · ·], reaching
at the point of singularity the value

J� = ��c(1 + G), |T | → 0, (16)

where w(n0) = 8λ8 and G(n0) = (1 + �8)λ
8 + �pλ

χ . From equations (15) and (16)
and the condition hsls = J� there immediately follows the synchronization of the growth,
�H s = + d ln hs

dτ
, and relaxation, �Ls = − d ln ls

dτ
, rates which singularly grow by the law

�s = �H s = �Ls = 1/|T |.
Clearly explosive growth of hex

s ought to trigger explosive growth of the ‘antiflux’ Jex, the
dominant contribution to which occurs in the vicinity |T | � 1 where the diffusional response
to the explosion forms in a narrow layer ∝ √|T | [18]. Thus, considering the medium to be a
semi-infinite one and allowing for (15) we can write [18, 20]

Jex = −
∫ T

−∞
dhs

dθ

dθ√
π(T − θ)

∼ − (1 + Q)

μ|T |3/2

whence there follows smallness of |Jex|/J� down to |T | ∝ �−2/3 → 0. Calculating then a
singular contribution into the flux relaxation rate

τ−1
J = −d ln J

dτ
= ω0(1 + w) + [τ−1

J ] (17)

we find

[τ−1
J ] = − J̇ex/J� ∼ (1 + Q − G)

�|T |5/2
(18)

whence there follows the catastrophic jump of τ−1
J from τ−1

J ≈ ω0 to τ−1
J → ∞ with the width

|T |cat ∝ �−2/5 → 0.

5. Scaling laws of passage through the point of singularity

According to [18], the remarkable consequence of the explosion in the limit K ∼ p3/2�/�c →
∞ is the exact scaling description of passage through the point of singularity. I shall present
here some basic results of the systematic scaling theory of annihilation catastrophe which
I consider to be the most important analytical achievement. For simplicity, I shall begin
with the universal limit n0 → ∞ and then, on its basis, a complete picture of catastrophe
universalization with the growth of n0 will be constructed.

Taking λ, Q, G → 0, according to (8) and (9) at the explosion stage ω0|T | → 0 we have

J (0) = J�(1 + ω0|T | + · · ·), l(0)
s = μJ�|T |(1 + ω0|T |/2 + · · ·), (19)

whence it follows that hex
s = J (0)/ l(0)

s = 1/μ|T | + · · ·, where the index ‘(0)’ marks the
solutions which neglect the contribution of hs = hex

s (h(0)
s = 0). As has been mentioned

above, the explosive growth of hex
s ought to trigger the explosive growth of ‘antiflux’ Jex

in the calculation of which the medium can be regarded to be a semi-infinite one. So, the
total flux J = J (0) + Jex. As the diffusion fluxes of fast and slow particles must be equal,
J D

L |s = J D
H |s = J , it is clear that against the background of dropping l(0)

s there must arise
an explosive growth of lex

s which must initiate exactly the same ‘antiflux’ J L
ex = J H

ex = Jex.
Assuming that at a developed explosion stage �s p  1 the dominant contribution to Jex occurs
at times |T |/p � 1, when for L particles the medium can be regarded to be semi-infinite, we
can write [18, 20]

Jex = −
∫ T

−∞
dhex

s

dθ

dθ√
π(T − θ)

= −
∫ T

−∞
dlex

s

dθ

dθ√
pπ(T − θ)

(20)

7
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Figure 2. Formation of a singular concentration explosion with growing � at n0 = 4 and
p = 0.25. Shown (from bottom to top) are the dependences �Hs(τ ) calculated numerically at
� = 103, 3 × 103, 104, 3 × 104, 105, 3 × 105, 106, 107 and 108. The value of the critical point τ�

calculated from equation (14) is denoted by the vertical dashed line. Inset: ‘synchronization’ of the
concentration explosion in the vicinity of the critical point τ�. Shown are the dependences �Ls(τ )

and �Hs(τ ) calculated numerically at � = 108, n0 = 4 and p = 0.25.

whence there follows the key condition of the scaling regime:
√

pḣex
s = l̇ex

s . (21)

Using (15) and (21) we obtain lex
s = √

phex
s = √

p/μ|T | + · · · and then taking ls = l(0)
s + lex

s
we conclude that in the vicinity of some characteristic time T f ∼ p1/4/μ

√
J� the explosive

growth rate begins to drastically decelerate. Due to the requirement T f /p � 1 necessary for
the realization of the regime (20), the explosive deceleration begins long before a noticeable
flux departure from the critical one |Jex(T f )/J�| � 1. Introducing the parameter

K = μ2 p3/2 J�

it can easily be seen that at any finite 0 < p < 1 with growth of � in the limit of large
K ∼ p3/2�/�c → ∞ the ratio |Jex(T f )|/J� ∼ √

T f /p ∼ 1/K1/4 → 0 and, therefore, down
to T f → 0 the flux remains ‘frozen’. One of the most important consequences of the drastic
deceleration of the explosive growth rate is the drastic deceleration of the rate of flux relaxation
growth. In [18, 20] it is shown that in the limit of large K → ∞ as a result of such deceleration
the flux remains ‘frozen’, and therefore the explosion develops synchronously

hsls = J�, �s = �H s = �Ls (22)

both before and after passage through the point of singularity where �s reaches a maximum.
In figure 2 as an illustration I show the numerically calculated dependences �H s(τ ) that
demonstrate the formation of singularity with growing � at n0 = 4 and p = 0.25. An analysis
of the given data suggests that as � grows, the critical point of the explosion maximum τ�(�)

rapidly (∝�−1) comes to the point of singularity τ�(∞), calculated according to equation (14).

8
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Figure 3. (a) Data of figure 2 for � = 105, 106, 107 and 108 (n0 = 4) replotted in the coordinates
�Hs versus T , where T = τ − τ� and τ� is the point of the explosion maximum. The data of
figure 8 (� = 105) for n0 = 1.8, 2.4 and 3.1 (diamonds) are also given. (b) Collapse of the data of
(a) in scaling coordinates �Hs(T)/�M

Hs versus T = T �M
Hs to the scaling function S(T) (solid line)

calculated from equation (27).

In the inset the dependences �H s(τ ) and �Ls(τ ) calculated numerically are compared at
� = 108. In accord with equations (22), at large �s the curves are seen to merge in
‘synchronous’ explosion.

According to [20], combining equations (19), (21) and (22) enables one to obtain

�s(ls + √
phs) = μJ� (23)

whence there follows a remarkably complete scaling description of passage through the point
of singularity. Indeed, from (22) and (23) we immediately conclude that the explosion rate goes
through the maximum �M

s in the point where l M
s /hM

s = √
p, whence we derive

hM
s = (2/μ)�M

s = p−1/4
√

J�, l M
s = p1/4

√
J�. (24)

Introducing then the scaling function ζ = hs/hM
s = l M

s / ls from (23) and (24) we find [20]

ζ − 1/ζ = 2�M
s T . (25)

From equation (25) it is easy to see that the characteristic timescale of explosion is determined
by the quantity T f = 1/�M

s , therefore introducing the reduced time T = T /T f we finally
obtain

ζ(T) = T +
√

1 + T2 (26)

whence we derive the scaling law of concentration explosion

�s = �M
s S(T), S(T) = 1√

1 + T2
. (27)

Two striking features of this result are the symmetrical universalization |T |−1 ↔ T −1 of �s

beyond the scope of the interval [−T f , T f ] and the remarkable symmetry T ↔ −T , ζ ↔ 1/ζ .
Figure 3(a) shows the data of figure 2 replotted in the coordinates �H s−T where T = τ−τ�, τ�

being the point of the explosion maximum. It is seen that in full agreement with equation (27)
(i) the rate of explosion �H s(T ) demonstrates the remarkable symmetry −T ↔ T and (ii)
beyond the [−T f , T f ] region, with unlimitedly contracting with growth of �, the explosive
rate comes to the universal law 1/|T |. In figure 3(b) the data of figure 3(a) are represented

9
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in the scaling coordinates �H s/�M
H s − T where T = T /T f = T �M

H s . It is seen that the
numerically calculated dependences collapse perfectly to the scaling function S(T) (27).

Substituting (26) into (20) allows one to find the scaling law of growth of the explosion-
triggered ‘antiflux’ Jex = J M

ex J (T) and then obtain the singular part of the flux relaxation rate
in the scaling form [18, 20]

[τ−1
J ] = − J̇ex/J� = [τ−1

J ]M W (T) (28)

where the amplitude at the point of explosion maximum

[τ−1
J ]M = cMhM

s (�M
s )3/2/J�

and the scaling function

W (T) = cW

∫ ∞

0
dθ/

√
θ [1 + (T − θ)2]3/2

has the asymptotics W (T) = (3πcW /8)|T|−5/2,−T  1 and W (T) = 2cW T−1/2, T  1,
where cM = �2(1/4)

4π
≈ 1.046 and cW = 4

√
π

�2(1/4)
≈ 0.539. Numerical analysis shows that

at T = 0.462 05 the scaling function W (T) reaches the maximum max W (T) = 1.156 27 . . .

whence for the amplitude of catastrophe at the point of maximum we find

max[τ−1
J ] = (1.156 27 . . .)[τ−1

J ]M .

Figure 4(a) demonstrates the dependences τ−1
J (T ) calculated numerically for the same

parameters as in figure 3(a). The data analysis suggests that in accord with equations (17), (18)
and (28) with growing � in the vicinity of the critical point τ� forms a singular jump of τ−1

J ,
the width of which contracts unlimitedly by the law |Tcat| ∝ �−2/5 and the amplitude of which
grows unlimitedly by the law max τ−1

J ∝ �1/4 (see below). Based on the data of figure 4(a)
in accord with equation (17) the time dependences of the singular part of the flux relaxation
rate were calculated, [τ−1

J ](T ) = τ−1
J (T ) − ω0(1 + w), and were then replotted in the scaling

coordinates [τ−1
J ](T)/[τ−1

J ](0) − T. The results are demonstrated in figure 4(b). It is seen
that in perfect agreement with equation (28) with growing � the numerical results collapse to
the scaling function W (T). For a more detailed illustration in figures 4(c) and (d) the data of
figure 4(b) are represented in double logarithmic coordinates in a wider range of |T| separately
for T < 0 (figure 4(c)) and T > 0 (figure 4(d)).

Equations (24) and (26)–(28) give a detailed picture of the universal concentration
explosion and annihilation catastrophe in the asymptotic limit K → ∞. Substituting into
these expressions J� = ��c and marking the universal asymptotic values of amplitudes with
the index (a) we obtain [18, 20]

hM
s (a) = p−1/4

√
��c, l M

s (a) = p1/4
√

��c, (29)

�M
s (a) = (μ/2)p−1/4

√
��c, (30)

[τ−1
J ]M(a) = (1.433 40 . . .)p−5/8�−5/4

c �1/4. (31)

One of the remarkable analytical advantages of the above approach is that it enables one not
only to determine the exact asymptotic amplitudes (29)–(31) but also to answer the question of
when and how they are reached. A systematic analysis of the crossover to the asymptotics (29)–
(31) is given in [20]. The central conclusion is that �M

H s reaches the asymptotic limit �M
s (a)

much faster than �M
Ls , therefore the point of the explosion maximum is defined by precisely

by the point of the �H s maximum. According to [20], with growing K the asymptotic
amplitudes (30) and (31) are reached by the laws

�M
H s/�M

s (a) = 1 − B�μ/K1/4 + O�(K−1/2), (32)

�M
Ls/�M

s (a) = 1 + (cM/
√

2 − B�)μ/K1/4 + · · · . (33)

[τ−1
J ]M/[τ−1

J ]M(a) = 1 + BJ μ/K1/4 + OJ (K−1/2) (34)

10
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Figure 4. (a) Formation of a singular jump of the flux relaxation rate τ−1
J with growing �

at n0 = 4 and p = 0.25. Shown are the dependences τ−1
J (T ) calculated numerically at

� = 105, 106, 107 and 108 (from left to right). (b) Collapse of the dependences [τ−1
J ](T)/[τ−1

J ](0)

versus T = T �M
Hs calculated from the data of (a) to the scaling function W (T) (solid line) calculated

from equation (28). The singular part of the relaxation rate was calculated from equation (17).
(c), (d) The data of (b) replotted in double logarithmic coordinates in a wider range of |T| for the
ascending T < 0 (c) and descending T > 0 (d) catastrophe branches. The data based on numerical
calculation for n0 = 1.8, 2.4 and 3.1 (� = 105, diamonds) which demonstrate the collapse to the
scaling function W (T) with growing n0 are also given.

where B� ≈ 0.0318 and BJ ≈ 0.776. From these expressions we conclude that �M
H s always

goes to its asymptotic from below whereas [τ−1
J ]M and �M

Ls always go to their asymptotics from
above. Remarkably, the coefficient B� appears to be anomalously small so that the contribution
of the K−1/4 term in the case of �M

H s becomes less than 0.01 already at K > 102.
To test the analytical predictions in [20] extensive numerical calculations were performed

within � = 104–108 for p = 0.01, 0.03, 0.1, 0.25, 0.5, 0.75. To exclude the contribution of
the initial conditions, the initial number of particles n0 was, depending on p, selected from the
range n0 = 10–200 so that in accord with equations (37) this contribution may not exceed
10−3%. Figure 5 shows the numerically calculated dependences γ� = �M

H s/�M
s (a) and

γJ = [τ−1
J ]M/[τ−1

J ]M(a) as functions of K/μ4. It is seen that with growing K the numerically
calculated amplitudes �M

H s and [τ−1
J ]M come, respectively, to the asymptotic values �M

s (a)

and [τ−1
J ]M(a) calculated analytically according to equations (30) and (31). Remarkably, in

accord with the predictions of equations (32) and (34): (i) γ� comes to 1 from below whereas
γJ comes to 1 from above; (ii) γ� comes to 1 much faster than γJ ; (iii) the law by which γJ

11
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10

Figure 5. The regularities by which the universal amplitudes �M
Hs and [τ−1

J ]M approach the

asymptotic values �M
s (a) (equation (30)) and [τ−1

J ]M (a) (equation (31)) with growing K. Shown

are the dependences γ� = �M
Hs/�M

s (a) and γJ = [τ−1
J ]M/[τ−1

J ]M (a) versus K/μ4 calculated
numerically within � = 104–108 for p = 0.01, 0.03, 0.1, 0.25, 0.5 and 0.75 (from left to right).
Depending on p, the initial number of particles n0 was selected from the range n0 = 10–200. The
analytical dependence BJ μ/K1/4 (equation (34)) is shown by a dashed line.

approaches 1 in a wide range of K/μ4 is described with excellent accuracy by the principal
term of equation (34).

From equations (17), (18), (28) and (31) it follows that the width of the jump in the flux
relaxation rate does not depend on p whereas its amplitude

max τ−1
J ∼ [τ−1

J ]M ∝ p−5/8(1 − p)5/4�1/4

grows rapidly with diminishing p. So, the smaller p is, i.e. the less L-diffusion restrains the
development of the explosion, the more brightly the effect is displayed. It is clear, however, that
in the limit of small p → 0 the condition K → ∞ imposes a rigid requirement to the value
�. In [18] it was demonstrated that if � → ∞ but p → 0, so that K � 1, the distribution
of L species is retained uniform (ls = N,�Ls = hs) and the final stage of explosion is thus
changed radically. It was discovered [18, 19, 22] that in the limit � → ∞,K � 1 at the point
of explosion maximum �M

H s an intermediate scaling should take place

hM
s = q�M

H s = bH�2/3, l M
s = bL�1/3. (35)

This prediction is supported by the numerical data which yield q = 2.24, bH = 1.63 and
bL = 0.73 [18, 22]. From equation (35) it follows that at � → ∞,K � 1 the jump amplitude
of τ−1

J at the explosion maximum grows with � much more sharply

[τ−1
J ]M = (q − 1)�M

H s ∝ �2/3, (36)

which gives rise to a qualitatively new phenomenon: the finite jump of the flux by a factor of
≈2 for the time |T |break ∝ �−2/3 → 0 (flux breaking effect). Leaving aside discussion of the

12
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crossover from the ‘flux breaking’ regime to the ‘synchronous explosion’ regime with growing
K [22], I shall focus here on the key property of the annihilation catastrophe in the limit of
small p → 0. In accord with equation (28), in the limit K → ∞, after the critical point has
been passed, the flux relaxation rate drops by the �-independent law ∝ 1/

√
T p, reaching at

times T ∼ p/ω2
0 the L-diffusion-controlled limit ω0/p [18]. Since in the limit K � 1 the

flux relaxation rate always grows with time, we conclude that independently of K in the limit
p → 0,� → ∞ there arises the most dramatic consequence of the annihilation catastrophe:
an abrupt, practically instantaneous (on the scale of ω0) disappearance of the flux [18, 19, 22]
(figure 6).

6. Universalization of the annihilation catastrophe

In [20] it was shown that the scaling theory of the annihilation catastrophe, presented in the
previous section for the universal limit n0 → ∞, also holds in the general case of finite n0 and
λ < 1 with the sole difference that now

J�(n0) = ��c[1 + G(n0)] and [�M
s /hM

s ](n0) = (μ/2)[1 − Q(n0)]
become the functions of n0. We thus have the complete scheme to lock the chain (5)–(18) and
to answer the question of when and how the universality is reached. It remains for us to find the
central characteristic of scaling, namely the amplitude of the explosion �M

s (n0), and then from
equation (28) to derive the amplitude of the catastrophe [τ−1

J ]M(n0). Using equations (24) we
obtain

�M
s = μ

2
(1 − Q)hM

s = μ

2
(1 − Q)p−1/4

√
J�

whence we conclude that at λ < 1 evolution of explosion with growing n0 is completely defined
by functions Q(n0) and G(n0), and find finally the laws of universalization of amplitudes of
explosion

�M
s (n0) = �M

s (∞)(1 + δ�)

and catastrophe

[τ−1
J ]M(n0) = [τ−1

J ]M(∞)(1 + δJ )

in the form

δ� = G/2 − Q, δJ = G/4 − 3Q/2. (37)

I distinguish two main consequences of equations (37):

(1) According to (15) and (16) the drop of δ� and δJ with growing n0 is surprisingly rapid:

Q, G ∝ n−8
0 (p < pc), Q, G ∝ n−χ

0 (p > pc),

where 3 < χ(p) < 8. Comparing this with the relatively slow decrease of δs

(equation (13))

δs(p < pc) ∝ n−8/9
0 , δs(p > pc) ∝ n−χ/(χ+1)

0

we conclude that universalization of explosion occurs long before hmin
s has reached hc

s ;
(2) According to (37) in the range p < pc with decreasing p some critical values �∗

8,i (p∗
i ) are

reached at which δ� and δJ reverse their sign (− → +) so that contrary to an intuitive
reasoning at p < p∗

� and p < p∗
J the amplitudes �M

s and maxτ−1
J , respectively, drop

with growing n0. From (15), (16) and (37) we obtain �∗
8,� = −1/17, p∗

� = 0.0609 and
�∗

8,J = −5/53, p∗
J = 0.0217. Note that this correlates with the behaviour of the function

δτ that passes through zero (− → +) at p∗
τ = 1/9.
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Figure 6. Annihilation catastrophe at different values of p. Shown are the time dependences
τ−1

J (T ) (a) and J (T )/��c (b) calculated numerically at � = 106 and n0 = 102 for p = 0.5
(open circles), p = 0.1 (filled circles) and p = 10−6 (triangles). Note the abrupt disappearance of
the flux at p = 10−6.

Figures 7 and 8 show the results of numerical calculations for � = 105 and p = 0.25,
giving a detailed picture of the formation of the universal explosion with growing n0. It is seen
that in accord with equations (37) already at small departures from nc

0(R = Rc) the transient
dynamics (7) terminates in an explosion that remarkably rapidly becomes universal: further
growth of n0 leads to a progressive shift of the critical point τ�(n0) (figures 7(a) and 8) without
changing the explosive dynamics in its vicinity but gradually universalizing the entire self-
acceleration trajectory (figure 7(b)). I distinguish two important points which characterize the
universalization process: (i) in accord with equations (27) and (28) a symmetrical ‘flash’ of the
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Figure 7. Formation of universal concentration explosion with growing n0 at � = 105 and
p = 0.25. (a) Numerical calculation of the behaviour of ls (τ ) and hs (τ ) for n0 = 1(R =
Rc), 3, 9, 30, 90 (from left to right). (b) Data for n0 = 3–90 replotted in log10(ls , hs ) − T (T = 0
corresponds to �M

Hs). Also given are the data for the flux J = hsls .

explosion rate �H s and an accompanying sharply asymmetrical jump of the flux relaxation rate
τ−1

J (figure 8) form long before the universalization of the corresponding amplitudes, shifting
self-similarly with growing n0; (ii) in accord with equations (13) and (17) as n0 grows, the
starting point of catastrophe reaches the level ω0 (figure 8) long before the starting point of
self-acceleration, hmin

s , reaches the level �c (figure 7). To test the analytical predictions I
have numerically studied the behaviour of the dependences τ�(n0),�

M
H s(n0), [τ−1

J ]M(n0) and
hmin

s (n0) by ‘scanning’ n0 from nc
0 to 104 in wide ranges of � = 105–108 and p = 10−3–

0.97 [20]. Based on the obtained data for each of the studied p and � values I calculated
the dependences δτ (n0) = τ�(n0)/τ

u
� − 1, δ�(n0) = �M

H s(n0)/�M
H s(∞) − 1, δJ (n0) =

[τ−1
J ]M(n0)/[τ−1

J ]M(∞) − 1 and δs(n0) = hmin
s (n0)/�c − 1 which I then compared with

the analytical predictions. I have found that in the region of small δi (n0) (i = τ,�, J, s) the
behaviour of functions δi(n0) is described with remarkable exactness by equations (14), (37)
and (13). Figure 9 represents the concluding n0 − p diagram of universalization in which are
compared the positions of the boundaries |δi | = 0.01 (i = τ,�, J ) and δs = 0.1 resultant from
a great number of numerical data (some of which are given in the inset) for � = 105 (in the
case i = J for � = 107) and calculated from (37), (14) and (12). Excellent agreement of the
analytical and numerical results (not shifting with the further growing �) needs no comment.

7. Experimental observation

Let us discuss the conditions and possibilities of an experimental observation of the annihilation
catastrophe. The irreversible bimolecular reaction A + B → 0 is one of the most abundant
reactions, therefore it is to be expected that the predicted phenomena can, in principle, be
observed in a wide class of physical, chemical and biological systems with a ‘catalytic’
interface which, because of its high energetic barrier, does not let diffusing particles A go
from medium 1 to medium 2 and diffusing particles B from medium 2 to medium 1 so that the
reaction A + B → 0 can occur only at the interface between the media [21, 23, 24]. Leaving
aside here the discussion of such systems, I shall focus on the main object of the model in
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Figure 8. Evolution of �Hs(τ ) (main panel) and τ−1
J (τ ) (inset) with growing n0 at � =

105 and p = 0.25. The numerical calculation results are shown for n0 = 1(R =
Rc), 1.05, 1.1, 1.2, 1.4, 1.8, 2.4, 3.1, 4 (from left to right).

question, namely adsorption–desorption systems (figure 1). Until now most of the theoretical
studies on the Aads + Bads → 0 catalytic reaction (the Langmuir–Hinshelwood process which
is also often referred to as the monomer–monomer catalytic scheme) have been performed
under the assumption that diffusion into the bulk can be neglected ([25–35] and references
therein). Such an assumption is valid in low-temperature systems with high surface–bulk
crossover barriers, i.e. in systems with negligibly small bulk solubility of A and B particles.
Here I address the wide class of catalytic systems where the surface–bulk crossover barriers
are not too high and, therefore, adsorption–desorption processes are always followed by a
more or less intensive diffusion of A and B particles into or from the bulk where reaction
between A’s and B’s is energetically forbidden [36]. This class of catalytic systems is not
only of fundamental interest for surface science but is also of considerable applied interest
for describing the interaction kinetics of gases with metals at high temperatures ([36–39]
and references therein). The theory presented in this paper gives a systematic description of
the diffusion-controlled kinetics of associative desorption into a vacuum of unlike particles
Aads+Bads → ABgas → 0, which are initially uniformly dissolved in the bulk. I shall focus here
on discussing the possibility of observing the predicted effects for one of the most important
surface reactions, carbon monoxide (CO) thermodesorption from metals into vacuum

Cads + Oads → COgas → 0.

It is to be mentioned first that the continual description (1), (2) holds as long as the ‘diffusion
length’ of the explosion at the point of maximum remains much greater than the monolayer
thickness a [18], δxM ∼ 1/

√
�M

s  a/�, whence there follow the limitations

�M
s � (�/a)2, K � p2(�/a)4.
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Figure 9. n0– p diagram of universalization of concentration explosion and the annihilation
catastrophe. Shown are numerically (symbols) and analytically (lines) calculated boundaries
|δτ | = 0.01 (squares), |δ�| = 0.01 (circles), |δJ | = 0.01 (diamonds) and δs = 0.1 (triangles).
Open symbols, δi < 0; filled symbols, δi > 0. Inset: numerically (circles) and analytically (lines)
calculated dependences |δ�| versus 1 + n0 at p = 0.01, 0.25, 0.5, 0.75 and 0.9 (from left to right).

Taking, for example, �/a ∼ 103 and p ∼ 0.01 we come to the requirements �M
s � 106

and K � 108 to see that for any value of the reaction rate constant κ the specimens must
have macroscopic sizes in order a considerable effect be observed. Based on the data of
monograph [37], I shall make estimations for three refractory metals, i.e. niobium, tantalum
and molybdenum, which at elevated temperatures dissolve carbon and oxygen in quite large
amounts. According to [37], at temperatures of intensive thermodesorption of CO in the range
from T ∼ 1600 ◦C to melting point for coefficients of carbon and oxygen diffusion in these
metals we find, respectively, DC ∼ (10−7–10−5) cm2 s−1 and DO ∼ (10−5–10−4) cm2 s−1,
whence it follows p = DC/DO ∼ 10−2–10−1. According to the data of [37–39] the desorption
rate constant of CO in the said temperature range alters within κ ∼ (10−23–10−18) cm4 s−1.
Substituting these values into the expression

� = δC(0)κ�/DC

and taking δC(0) = cC(0) − cO(0) ∼ 1020 cm−3 and � ∼ 0.1 cm we find that in the said
temperature range the � parameter value changes within � ∼ 102–106. For the density of
the diffusion-controlled desorption flux of CO at the critical point we find I� ∼ DCδC(0)/� ∼
1014–1016 particles cm−2 s−1. We thus conclude that in a study of isothermal desorption of CO
at elevated temperatures under high vacuum the predicted sharp jump of the flux relaxation rate
can confidently be registered experimentally with a standard measuring technique.
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8. Conclusion

In this paper the key features of the systematic theory of formation of the universal annihilation
catastrophe from a smooth initial distribution have been presented and the results of extensive
numerical calculations of the regularities of catastrophe formation in a wide range of parameters
have been demonstrated. The two most important features of the annihilation catastrophe can
be formulated as follows:

(1) In the majority of the models which demonstrate the formation of finite-time singularities
an analytical description of the development of the singularity (based on properties of self-
similarity) appears possible only for some narrow vicinity of the critical point beyond
which the solution cannot as a rule be continued or is impossible in principle. One
of the main advantages of the theory presented here is the asymptotically exact scaling
description of passage through the point of singularity which yields a complete dynamical
picture at the both sides of the critical point.

(2) Arising as a result of explosive growth of the ‘antiflux’ Jex at the background of slow
relaxation of the diffusion-controlled flux J (0), the annihilation catastrophe demonstrates
a peculiar singular behaviour at which two explosive processes (�H s and �Ls) are
developing simultaneously, effectively ‘compensating’ one another, so that for an external
observer of flux (J ) the explosion dynamics goes unnoticed up to the critical point τ�, in
the vicinity of which ‘decompensation’ of explosions is manifested as a sudden singular
jump of the flux relaxation rate. In the limit of small p this brings about a most radical
consequence—an abrupt disappearance of the flux.

In conclusion, I would like to point out two of the many prospective lines of development
of the results represented in this paper.

(i) Fluctuations. In recent works by O’Shaughnessy and Vavylonis [21, 23] it was shown
that in the problem of diffusion-controlled interfacial annihilation A + B → 0 the critical
bulk dimension, below which fluctuation effects become essential, is dc = 1. This implies
that the quasi-one-dimensional mean-field theory represented here should give an adequate
description of the development of the annihilation catastrophe in all physical dimensions
d = 3 (catalytic surface), d = 2 (catalytic line) and d = 1 (catalytic point) with possible
logarithmic corrections in the case dc = 1. It should be noted, however, that the many-
particle analysis performed in [21, 23] was carried out only for an initial transient stage of
annihilation (semi-infinite medium). Therefore, it would be highly important (especially
in the light of the recent work [40]) to carry out extensive numerical simulations of low-
dimensional (d = 1, 2) discrete systems with the aim of revealing the role of fluctuation
effects in the development of the annihilation catastrophe.

(ii) Anomalous diffusion. In the last few years much attention has been paid to researching
reaction–diffusion systems with anomalous diffusion [14, 41, 42]. Subdiffusive motion is
particularly important in the context of complex systems such as glassy and disordered
materials. Recently, in [43] the scaling theory of localized reaction front propagation,
introduced almost two decades ago by Galfi and Racz [10], was generalized for the case
of a reaction–subdiffusion front. The scaling exponents of the front as functions of the
subdiffusion parameter were obtained in the framework of the fractional dynamic approach
and the quasistatic approximation (QSA). Note that according to the QSA the width and
the height of the reaction front depend on time only through the diffusion (subdiffusion)-
controlled boundary current J f [44–47] which on the timescale of front equilibration
remains effectively ‘frozen’, and in this sense it is analogous to the critical flux J�. Thus, on
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the basis of the scaling theory represented here and using a fractional dynamic approach it
would be of great interest to study the laws of the formation of the annihilation catastrophe
in systems with bulk subdiffusion.
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